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Floor 4D MESUARABLE OBJECTS
Dictionary

	№
	English
	Russian
	Kazakh

	1
	measurable
	измеримый
	

	2
	measure
	мерa
	

	3
	ring
	кольцо
	

	4
	event
	событие
	

	5
	additive
	аддитивный
	

	6
	partition
	разбиение
	

	7
	probability
	вероятность
	

	8
	impossible
	невозможный
	

	9
	reliable
	достоверный 
	

	10
	shift
	сдвиг
	

	11
	turn
	поворот
	

	12
	nearly everywhere
	почти всюду
	

	13
	integral
	интеграл
	

	14
	integrable function
	интегрируемая функция
	


Section I
MEASURABLE SPACES
Room 4D.1. MEASURABLE SPACES
Let Х be a set, and is a family of its subsets. 
Definition 4D.1. The pair (Х,Г) is called the measurable space with carrier XE "пространство:измеримое"  Х and the family of measurable set Г.

If (Х,Г) is measurable space, then Г measurable structure on the set Х.  Each topological space is measurable; each it’s open set is measurable.
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t opological  space       proximity   of points   makes sense     m easurable  space     measurability of sets   makes sense    

m etric  space     distance between points   can be determined      space   with   measure       size of sets   can be determined  


Fig. 4D.1. Relations between measurable and topological objects.

Let (Х,Г) and (Y,() be measurable spaces, and А : Х ( Y (see Fig. 4D.2).

Definition 4D.2. If А-1(М)(Г for all М((, then 
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 is the measurable operator XE "оператор:измеримый" . An operator is called measurable isomorphism, if it is invertible and it is measurable operator with its inverse operator. Measurable spaces are isomorphic, if a measurable isomorphism between these spaces there exists. The property is measurable, if it saves after measurable isomorphism’s. 
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Fig. 4D.2. Isomorphism of measurable spaces.

Let (Х,Г) be measurable space. Family Г is the ring of sets, if it closed with respect to the operations of the intersection and the symmetric difference (see Fig. 4D.3). Sums and differences are determined on the ring too because of the equality (see Fig. 4D.4).
М ( М'  =  (М(М') ( (М(М') ,  М \ М'  =  М ( (М(М') ,
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Fig. 4D.3. The ring of sets is closed with respect to 
intersections and the symmetric differences.
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Fig.4D.4. Determination on the sum and the difference.

Definition 4D.3. The ring Г on the set Х is the algebra of sets if it includes X. The algebra of sets is -algebra if the denumerable sum of sets from Г is the element of Г.

Example 4D.1 (task). Finite sets. We consider the set Х = {х,у}. The family Г1 = {(,{x},{y}} is not the ring because the symmetric difference of the sets {x} and {y} is not an element of Г1. Г2 = {(,{x}} is the ring but not the algebra because it is not include the set X. The sets Г3 = {(,X} and Boolean are algebras and -algebras (see Fig.4D.6).
Example 4D.2. Events XE "событие" . We consider the family Г of events, which are subsets of the set Х of elementary events. The sum of events is the realization one of events at least. The intersection of events is the realization of both events. The difference of events is the realization of first event without realization of second event. The symmetric difference of events is the realization only one of events. So we have the algebra of events. It is 
(-algebra too.

Example 4D.3. Real numbers. Let Х = 
[image: image7.wmf]¡

, and Г includes all finite sums of open, closed and semiopen sets with empty set, one point sets and different infinite intervals. Then we have the algebra, but not (-algebra. It is 
(-algebra if  Г includes denumerable sums of these intervals.  
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Fig. 4D.5. Measurable spaces on the two elements set.

Section II SPACE WITH MEASURE
Room 4D.2. Spaces with measure
Definition 4D.4. The functional ( on the algebra Г is additive XE "функционал:аддитивный" , if for all set М(Г and all its finite partition М1, ..., Мn from Г the following equality
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is true (see Fig. 4D.6). The functional ( on the (-algebra Г is (-additive XE "функционал:аддитивный" , if for all set М(Г and all its denumerable partition {Мk} from Г the following equality
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is true.
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Fig. 4D.6. Additivity of the functional.
Definition 4D.5. The measure ( on the algebra ((-algebra) Г of the measurable space (Х,Г) is the additive ((-additive) operator from Г to the set 
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 such that ((() = 0. The three (Х;Г,() is the space with measure XE "пространство:с мерой" . 
Table. 4D.1. Analogy between measure theory and probability theory
	measure theory
	probability theory

	measurable set 
	event

	measure of the set
	probability of the event

	algebra of sets
	set of events

	space with measure 
	probability space

	sets don’t intersect 
	independent events

	empty set
	impossible event

	carrier
	reliable event

	complementary set
	reverse event

	sum of sets
	realization one of events at least

	intersection of sets
	realization of both events

	subset of the set
	corollary of the event


Example 4D.4. Finite set. We consider the set Х = {x,y,z} and its 
(-algebra Г = {(,{x},{y,z},X}. Determine the functional ( by equalities
((() = 0,  (({x}) = 1/3,  (({y,z}) = 2/3,  ((X) = 1.

We obtain the space with measure (Х;Г,() (see Fig. 4D.7).


[image: image13.wmf]х

 

z

 

 

у

 

 

Æ

 

х

 

z

 

 

у

 

х

 

z

 

 

у

 

0

 

 

 

1/3

 

 

 

2/3

 

 

 

 

1

 

X

 

Г

 

m

 

+

¡

 

 

(

Х

,Г) 

–

 

measurable space

 


Fig. 4D.7. The space with measure (Х,Г,().

Example 4D.5. Algebra of real numbers. We consider the algebra on the set of real numbers. It includes all finite sums of finite and infinite intervals, one point sets and empty set. We determine the functional (. Its values on the empty set and one point sets are equal to zero; the values of ( on the open finite interval (a,b) and the corresponding closed and semiopen intervals are equal to b – a; and the value of ( on the each infinite interval is equal to ∞. Then ( is measure.
Let (Х;Г,() and (Y;(,() be spaces with measure; and operator  А : Х ( Y (see Fig. 4D.8).
Definition 4D.6. The operator А : (Х;Г,() ( (Y;(,() saves the measure if 
((А-1(М)) = ((М) (М((.

If the operator А is invertible, and A and A-1 save the measure, then operator A is the isomorphism of measure, and the spaces with measure are isomorphic XE "пространства:с мерой, изоморфные" .
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Fig. 4D.8. Isomorphism of spaces with measure.

Example 4D.6. The easy isomorphisms of measure on the plane are shift operator determined by equality Ах = х+с for all point x, where is the point of plane, and turn operator, which turns the object to some angle (see Fig. 4D.9). The operator determined by formula А(х,у) = (2х, у/2) for all х, у(
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 (see Fig. 4D.10).


[image: image16.wmf] 

B

 

A

 

А

 

–

 

turn

, 

В

 

–

 

shift

 


Fig. 4D.9. Shift and turn are isomorphism of measure.


[image: image17.wmf]A

A


Fig.4D.10. Isomorphism of measure.
Room 4D.3. MEASURES
We consider at first Dirac measure. Let X is a set, and 
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 We determine Dirac measure µz of a subset M of X by formula
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Prove that it is measure in really. At first, 
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 because z doesn’t belong to the empty set. Let 
[image: image21.wmf]{

}

M

a

 be a set of subsets of X, and 
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 We can have two cases. May be, there exist a number (( such that 
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for the first case, because z is the point of the sum of the given sets. Then
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for the second case, because z is not the point of the sum of the given sets. So µz is the measure.
Now we consider the measure on the set of real numbers. Let the measure of the empty set be equal to zero. The measure of each finite interval (a,b) is equal to its length 
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 and  the measure of  each infinite interval is equal to infinity. It is known (see Unit С), that each open set G on the numbers line is the sum of the lass or equal to denumerable family of nonintersecting intervals (ak,bk), namely
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Then we determine the measure of the open set G as the sum of measures of these intervals
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The exterior measure of the of the arbitrary set М from 
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 is XE "мера:внешняя" 
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where lower bound includes all open sets (elements of the topology (), contain the set М.
Definition 4D.7. The set М from
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 is called Lebesgue measurable set XE "множество:измеримое по Лебегу, линейное" , if 
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The Lebesgue measure of Lebesgue measurable set is its exterior measure.
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 Fig. 4D.11. Lebesgue measure of the set.

Example 4D.7. Denumerable set. We consider the one point set {х}. The 
(-neibourhood G( = (х-(,х+() of the point х contains {х}. The difference G(\{х} is the sum of the intervals (х-(,х) and (х,х+(). So it is an open set. Then we get
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The lower bound of all positive values of ( is equal to zero. So the set {х} is measurable. Then we have
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Thus the measure of the each one point set is equal to zero (see Fig. 4D.12). 
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Fig. 4D.12. The measure of the one point set is equal to zero.

Each denumerable set М is the denumerable sum of the one point set {хk}
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The family of the Lebesgue measurable sets is the (-algebra; then the set М is measurable. Its measure is equal to
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Hence the measure of the arbitrary denumerable set is equal to zero. 
Example 4D.8. Cantor set XE "множество:Кантора" . We determine a set S on the interval [0,1]. It contains the middle third (1/3,2/3) in the first step. We add to S the middle thirds (1/9,2/9) and (7/9,8/9) of the other intervals in the second step. Further we add to S the middle thirds of other smaller intervals, etc. The set S is the result of this procedure after infinity steps (see Fig. 4D.13). Cantor set С is the supplement of S.
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Fig. 4D.13. Determination of the set S.

We find the cardinality of Cantor set. Each number from the interval [0,1] can be transformed the ternary fraction. All numbers of S from the first step of our procedure have the first fractional digit 1 (see Fig.  4D.12). All numbers whit the second digit 1 are contained to S in the second step; all numbers whit the third digit 1 are contained to S in the third step, etc. Hence Cantor set includes only numbers from the interval [0,1] without any digits 1 in the ternary system. So we have
С  =  {0, 0.2, 0.02, 0.22, 0.002, 0.022, 0.202, 0.222, ...}.

Each number х of Cantor set determined the number х/2 from the set 
С '  =  {0, 0.1, 0.01, 0.11, 0.001, 0.011, 0.101, 0.111, ...}.

We determine the set C'' now. Each its element has the same form as the corresponding element of C', but in the binary system, for example the second element 0.1 of С' is the fraction 1/3, and the corresponding element of C'' is 1/2 (see Table 4D.2). It is obviously that the set C'' includes all real numbers of the interval [0,1] in the binary system. So it has the continuum cardinality. Cantor set is equivalent to it. Therefore it has the continuum cardinality too.
Table. 4D.2. Determination of the cardinality of  Cantor set. 

	C
	0
	0.2
	0.02
	0.22
	0.002
	0.022
	0.202
	0.222

	C '
	0

0
	0.1

1/3
	0.01

1/9
	0.11

4/9
	0.001

1/27
	0.011

4/27
	0.101

10/27
	0.111

13/27

	C ''
	0

0
	0.1

1/2
	0.01

1/4
	0.11

3/4
	0.001

1/8
	0.011

3/8
	0.101

5/8
	0.111

7/8


We find the measure of Cantor set. The set S is the sum of open intervals. Its measure is the sum of measure of these intervals. We have 2k  intervals with length 1/3k for the step k. Then we have
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Hence ((S) = 1. The sum of the nonintersecting sets С and S is the interval [0,1]. So the sum of its measure is equal to the measure of this interval, namely 1. Therefore the measure of Cantor set is the distance between measures of [0,1] and S. So ((С) = 0. Thus Cantor set with continuum cardinality has the zero measure.
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Fig. 4D.14. Equivalence of points on the circle. 
Example 4D.10. Vitali set XE "множество:Витали" . We consider the circle М with unit length and irrational number (. Let Аn : М ( М be the transformation of turn the circle to the angle (n(, where n is an integer number. We determine the equivalence ( on М such that the relation х(у is true if у = Аnх for a number n(
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(see Fig. 4D.14). Consider the factor set M/(. Each its element is the denumerable set {Anx | n(
[image: image44.wmf]¢

}, where х is a point from the circle. The Vitali set Ф0 contains one element from each these equivalence classes. We consider the set Фn = АnФ0 . It is the result of the transformation of the set Ф0 by the operator Аn. Each point х(Ф0 maps to the point Аnх, which is equivalent to х (see Fig. 4D.14). Then the operator Аn is a map on the concrete equivalence class. So for all n(
[image: image45.wmf]¢

 the set Фn contains one and only one element from each equivalence class. Suppose that there exists the point х from М such that х(Ф0(Фn , where n(0. So there exists the point у(Ф0 such that 
х = Ау. Therefore the points х and у are equivalent. However the Vitali set includes only one point from each equivalence class. Then the intersection of Ф0 and Фn is empty. We can prove analogically that Фn (Фm ( ( for all n(m.

The set Ф0 contains one point from each equivalence class. So for all х from М there exists an equivalent point у from Фn, namely х = Аnу. Therefore х(Фn. Hence the arbitrary point of the circle М is included to a set Фn. Then M is the sum of the nonintersecting sets {Фn}.
The operator Аn saves the measure. Then all sets Фn have the same measure if it is measurable. So we get
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Therefore this sum is equal to zero if ((Ф0) = 0, and it is equal to infinity, the measure of Vitaly set is positive. However ((М) = 1 because M is the circle with unit length. Therefore Vitaly set is not measurable XE "множество:не измеримое" . 
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Fig. 4D.15. Equivalence of the sets Ф0 and Фn.

Room 4D.4. Measurable functions 

Definition 4D.8. The function х is measurable XE "функция:измеримая" , is the set  
[image: image48.wmf]{

}

()|()

a

E

ххa

xx

=>

 is measurable for all number а.
Example 4D.11. Continuous function. We consider a continuous function х with respect to the (-algebra of real numbers. The set Еа(х) is the preimage of the open set (а,(). It is known that the preimage of each open set is open for all continuous operators. So the set Еа(х) is measurable. The each continuous function is measurable (see Fig. 4D.16).
Example 4D.12. Dirichlet function XE "функция:Дирихле" . This function D on the interval [0,1] is equal to 1 for rational values and 0 for irrational values. The set Ea(D) is equal to [0,1] for negative values of а, to intersection 
[image: image49.wmf]¤

([0,1] for 0(а<1 and to empty set if а(1. Then this set can be the interval [0,1], denumerable set, and empty set. These sets are measurable. So Dirichlet function, which is the function with infinity set of discontinuity is measurable (see рис 4D.17). 
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Fig. 4D.16. The continuous function is measurable.
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Fig.4D.17. Dirichlet function is measurable.

Example 4D.13. Vitaly function XE "функция:Витали" . This is the function V on the interval [0,1], which is equal to 1 on Vitaly set and to 0 for other points. The set Ea(V) is equal to [0,1] for negative а, to Vitaly set 0(а<1, and to empty set if а(1. If 0(а<1 then the set Ea(V) is not measurable. Then Vitaly function is not measurable. 
Definition 4D.9. The property is true nearly everywhere on the measurable set М, if it can be false only for the subset of M with zero measure. Measurable functions are equivalent if it is equal nearly everywhere.
Dirichlet function is equivalent to the function, which is equal to zero everywhere.

Task. Which functions are equivalent with respect to Dirac measure?
Room 4D.5. INTEGRALS 

The function х on the interval [a,b] is simple, XE "функция:простая"  if there exists the finite family 
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where ci is a constant, and the function (i is equal to 1 on the set  Mi and to 0 in other points, i = 1,… , n. The integral XE "интеграл:от простой функции"  of the simple function is the value (see Fig. 4D.18)
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where  is Lebesgue measure.   
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Fig. 4D.18. Integral of the simple function. 

Definition 4D.10. The function х is Lebesgue integrable on the interval [a,b], if there exists the sequence {xk} of simple functions, which converges almost everywhere to the function x, besides there exists the limit 
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which is called Lebesgue integral of the function х on the interval [a,b].

We clarify this construction. The set of values х([a,b]) can be divided by points 
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 such that  y0 =  inf  х < y1< ...<yn = sup х. Consider the sets

[image: image58.wmf]{

}

-1

 [,](), 1, ... ,

=|

iii

Мabyхyin

xx

Î££=


и Lebesgue integral sum  XE "сумма:интегральная, Лебега" 
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Let there exists the limit of the integral sum if the length of the maximal interval [yi-1,yi] converges to zero, and it does not depend from choose of the points 
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. Then this limit is called Lebesgue integral of the function x on the set [a,b]. By the way, the determination of Riemann integral uses the partition of the set of argument, but not the set of values (see Fig. 4D.19). 
Example 4D.14. Dirichlet function XE "функция:Дирихле" .  XE "функция:Дирихле" We determine Riemann integral sum of Dirichlet function XE "функция:Дирихле" . For all interval of its argument there exist rational and irrational points. So the value of the sum and its limit depend from the selection of the point from interval. Therefore Dirichlet function is not Riemann integrable. We try to find its Lebesgue integral. Divide the set of values D([0,1]) = [0,1]  by arbitrary points 
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. We determine sets
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The sets (2 , ... , (n-1  are empty,  (1  includes all irrational points, and (n contains only rational points. Then we get
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The integral sum is equal Sn = (y1-y0). After the passing to the limit we have 
Sn(0. Therefore Lebesgue integral of Dirichlet function equal to zero. 
Example 4D.15. We use the determination of Riemann integral and Lebesgue integral for calculation of money. We have the function, which has the number of the denomination as the argument and its value as the value of the function. The construction of Riemann integral signifies the calculation of the money in the order of its taking, particularly the value of the first denomination plus the value of the second denomination, etc. The construction of Lebesgue integral signifies the preliminary sorting the money by its values. The result is equal to the sum of product of numbers of money with concrete value and value of denomination with this value. If we have a lot of money the Lebesgue construction is better.
Example 4D.16. Dirac integral. XE "функция:Дирихле"  We determine Dirac integral with respect to the measure µz of the function x by formula
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Let µ is the sum of measures 
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Fig. 4D.19. Riemann integral and Lebesgue integral.
_1177484537.doc
[image: image2.wmf]1


()


M


m


[image: image3.wmf]2


()


M


m


[image: image4.wmf]12


()()


MM


mm


+


[image: image5.wmf]+


¡



[image: image1]

M1







M2







M2







M1







(







(







(







� EMBED Equation.DSMT4  ���







� EMBED Equation.DSMT4  ���







� EMBED Equation.DSMT4  ���







� EMBED Equation.DSMT4  ���











_1177481925.unknown



_1177481960.unknown



_1177482056.unknown



_1177481824.unknown




_1383922053.doc










 о   о















(







 Х







(







о











 х







(











Х







о



х







Г2











Г1







Г3



























Г3 is algebra 











 у



















Х(Г2 , Г2 is not algebra 











{x}{y}(Г1



Г1 is not ring 











о



 у







о











о











х












_1395481750.unknown

_1395482604.unknown

_1395486965.unknown

_1395487446.unknown

_1427547937.doc


А – turn, В – shift







A







B












_1395487507.unknown

_1395487382.unknown

_1395482727.unknown

_1395483028.unknown

_1395482657.unknown

_1395482301.unknown

_1395482355.unknown

_1395482143.unknown

_1383930524.doc
[image: image1.wmf]+


¡




 (Х,Г) – measurable space







� EMBED Equation.3  ���







(







Г







X







0











1/3











2/3















1







 у







z







х







 у







z







х







(







 у







z







х











_1177482779.unknown




_1383974072.doc


Step 3







Step 2







Step 1







0.001







0.021







0.201







0.221







 0.21







 0.01







 0.1












_1384058569.doc
[image: image1.wmf](


)


1


n


nii


i


S


хh


h


=


=


å


[image: image2.wmf](


)


1


n


nii


i


ShM


m


=


=


å




� EMBED Equation.2  ���







 Riemann integral







 х







 х((i)







 (0







 (1







     (i -1







 (i







 hi







 (i







 х







  (







 yn







 yi







 yi-1







 yo







 hi







� EMBED Equation.2  ���















Мi







Мi







 Lebesgue integral







  (











_1162634325.unknown



_1162634442.unknown




_1395481606.unknown

_1383985255.unknown

_1383972757.doc


[      ) 







 (







[             ]







 (







(  ) 







(   ) 







(                  ) 







(            ) 







G is open







М is arbitrary







М ( G







(М) = inf (G)












_1383924036.unknown

_1177488214.doc
[image: image1.wmf]()[0,1]


()[0,1]


()


a


b


a


ED


ED


ED


=


=Ç


=Æ


¤




 f







c







 a







b











� EMBED Equation.DSMT4  ���











 1







 1







D











_1177487935.unknown




_1188283231.unknown

_1383920174.doc


topological space 







proximity of points



makes sense











measurable space







measurability of sets�makes sense











metric space







distance between points



can be determined 











space with measure 







size of sets



can be determined












_1383920544.unknown

_1188283383.unknown

_1383499522.doc






Room 4D.5



Integrals











Floor 3







Section II



SPACES WITH MEASURE



















Room 4D.3



Measures















Unit В







Room 4D.2



Spaces with measure















Room 4D.4



Measurable�functions















Section I 



MEASURABLE SPACES







Room 4D.1



Measurable spaces







Unit С











Floor 5







Floor 2












_1188283261.doc
[image: image1.wmf]1


n


ii


i


хc


c


=


=


å


[image: image2.wmf](


)


1


()d


b


n


ii


i


a


хcM


xxm


=


=


å


ò




Mi







Mi







ci







� EMBED Equation.3  ���







� EMBED Equation.3  ���











_1162634055.unknown



_1188283244.unknown




_1177488765.unknown

_1177497980.unknown

_1177488792.unknown

_1177488649.unknown

_1177485434.unknown

_1177485994.unknown

_1177485323.unknown

_1162462293.unknown

_1162631736.unknown

_1162633782.unknown

_1162634214.unknown

_1164514468.doc
                               


                                  (

                                 (





                    (      


             (





                    (





        
                                                             (

      

(

                                            

  (

 х







Аnx







Аn







Аm







Фn







Ф0







 ( n (







Ф0












_1162633929.unknown

_1162631975.doc


z = Am y = Am+n x







y = An x



x = An y







х = A0 x











x







 y







M







An







Am







 (n(







 (m(







 z 












_1162462437.doc


(                         )











 (







 ( -(







 (







 ( +(







G







(}) = inf G) = 0












_1162462487.unknown

_1162463259.unknown

_1162462335.unknown

_1162440191.unknown

_1162462064.unknown

_1162462271.unknown

_1162443406.doc
[image: image1.wmf]1


1


()


(),()


()(())


MAM


MAM


mn


mn


-


+


-


ÎGÛÎS


GSÌ


=


¡




 М







  Г







 А(М)







  (







 X







 Y











 А







  (( Г) 







  ( (()







� EMBED Equation.DSMT4  ���











_1162440445.unknown




_1162462041.unknown

_1070947785.doc






 M'







M(M'







M(M'







 M,M'(Г  ( (M(M')(Г, (M(M')(Г







 M












_1162379694.doc


 М







  Г







 А(М)







  (







 X







 Y







М(Г ( А(М)((







 А












_1162440112.unknown

_1070950054.doc


A







A












_1071040308.unknown

_1070947838.doc


М(М'  =  (М(М') ( (М(М')











М\М'  =  М ((М(М')











М(М'







М(М'











М







М'







М







М'







М(М'












_1070022084.unknown

_1070023446.unknown

_1070024033.unknown

_1070023423.unknown

_1069681224.unknown

_1066630401.doc


 f







G1







G2







 a







Ea(f) = G1 ( G2



Ea(f) – открыто (а







Ea(f) = {x | f(x) > a} 
























